Hybridization of surface waves with organic adlayer librations: a helium atom scattering and density functional perturbation theory study of methyl-Si(111).

نویسندگان

  • Ryan D Brown
  • Zachary M Hund
  • Davide Campi
  • Leslie E O'Leary
  • Nathan S Lewis
  • M Bernasconi
  • G Benedek
  • S J Sibener
چکیده

The interplay of the librations of a covalently bound organic adlayer with the lattice waves of an underlying semiconductor surface was characterized using helium atom scattering in conjunction with analysis by density functional perturbation theory. The Rayleigh wave dispersion relation of CH3- and CD3-terminated Si(111) surfaces was probed across the entire surface Brillouin zone by the use of inelastic helium atom time-of-flight experiments. The experimentally determined Rayleigh wave dispersion relations were in agreement with those predicted by density functional perturbation theory. The Rayleigh wave for the CH3- and CD3-terminated Si(111) surfaces exhibited a nonsinusoidal line shape, which can be attributed to the hybridization of overlayer librations with the vibrations of the underlying substrate. This combined synthetic, experimental, and theoretical effort clearly demonstrates the impact of hybridization between librations of the overlayer and the substrate lattice waves in determining the overall vibrational band structure of this complex interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational dynamics and band structure of methyl-terminated Ge(111).

A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111)...

متن کامل

Helium-surface interaction potential of Sb(111) from scattering experiments and close-coupling calculations

Helium atom scattering (HAS) was used to study the antimony Sb(111) surface beyond the hard-wall model. HAS angular distributions and drift spectra show a number of selective adsorption resonance features, which correspond to five bound-state energies for He atoms trapped in the surface-averaged He-Sb(111) potential. As their best representation, a 9-3 potential with a depth of 4.4 ± 0.1 meV wa...

متن کامل

Theory of surface phonons at metal surfaces: recent advances.

Recent studies of the surface dynamics of Al(001) and Cu(111) based on density functional perturbation theory have substantiated the existence of subsurface optical phonon resonances of all three polarizations, thus confirming early predictions of the embedded-atom method. The hybridization of the shear-vertical optical resonance with the longitudinal acoustic phonon branch accounts for the ubi...

متن کامل

محاسبه سطح مشترک (111)Pb/Si با استفاده از نظریه تابعی چگالی

  Work function and surface energy per unit area were calculated in the framework of density functional theory (DFT) with Linearized A ug mented Plane Wave Plus Local Orbital method in full potential for a clean symmetric slab of silicon containing two (top and bottom) surfaces. The surfaces were theoretically modeled using supercell technique by stacking a variety of silicon layers along (111)...

متن کامل

Study on Sunitinib Adsorption on Graphene Surface as an Anticancer Drug

In recent years, Nano technology and its application have moved to discovering chemicaltherapy drugs. Research, development for finding new targets in tumors, targeting methodsand stabilizing the nano particle in targeted cells is based on drug delivery and its crucialeffect. Examining the computational controlled drug delivery by graphene sheets has becomevery significant due to numerous side ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 15  شماره 

صفحات  -

تاریخ انتشار 2013